Valor absoluto (álgebra) - определение. Что такое Valor absoluto (álgebra)
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Valor absoluto (álgebra) - определение

FUNÇÃO MATEMÁTICA QUE FORNECE APENAS VALORES REAIS POSITIVOS

Valor absoluto (álgebra)         
Valor absoluto, em álgebra, é uma função que associa a cada elemento um número real. Esta função tem algumas propriedades semelhantes à função modular, que leva cada número real a um número positivo, e que é generalizada para números complexos.
Álgebra abstrata         
ÁREA DA MATEMÁTICA
Álgebra Abstrata; Álgebra abstracta; Álgebra moderna
Álgebra abstrata é a subárea da matemática que estuda as estruturas algébricas como grupos, anéis, corpos, espaços vetoriais, módulos e álgebras. O termo abstrata é utilizado para diferenciar essa área da álgebra elementar estudada no colégio, na qual são abordadas regras para manipular (somar, multiplicar, etc) expressões algébricas em que aparecem variáveis e números reais ou complexos.
Sigma-álgebra         
ESTRUTURA ALGÉBRICA FECHADA EM RELAÇÃO À UNIÃO ENUMERÁVEL, INTERSEÇÃO E COMPLEMENTO
Σ-algebra; Σ-álgebra
Em matemática, uma σ-álgebra (pronunciada sigma-álgebra) sobre um conjunto X é uma coleção de subconjuntos de X, incluindo o conjunto vazio, e que é fechada sobre operações contáveis de união, interseção e complemento de conjuntos. Estas álgebras são muito usadas para definir medidas em X.

Википедия

Valor absoluto (álgebra)

Valor absoluto, em álgebra, é uma função que associa a cada elemento um número real. Esta função tem algumas propriedades semelhantes à função modular, que leva cada número real a um número positivo, e que é generalizada para números complexos.

O valor absoluto nos números reais, representado por |.|, é definido pela relação de ordem nos reais. Esta função pode ser estendida aos números complexos, apesar de não ser possível embutir em C {\displaystyle \mathbb {C} \,} (conjunto dos números complexos), uma relação de ordem total. Para algumas finalidades, torna-se interessante utilizar apenas o valor absoluto, e não a relação de ordem. Assim, pode-se definir o que seja um valor absoluto para corpos genéricos, de forma axiomática. É também possível definir um tipo de valor absoluto cujo contradomínio não sejam os números reais, mas sim corpos ordenados arbitrários.

Em alguns livros, o valor absoluto é chamado de valoração, porém em outros a valoração é outro tipo de função, onde o contradomínio não são os números reais, mas um grupo ordenado qualquer.